REVIEW LITERATUR: SINTESIS PASIR BESI MENJADI NANOPARTIKEL MAGNETIT MELALUI PENERAPAN METODE KOPRESIPITASI

Main Article Content

Sri Nengsih

Abstract

Proses sintesis nanopartikel magnetit (Fe3O4) dari pasir besi melalui metode kopresipitasi telah diteliti untuk berbagai proses variasinya. Adapun tujuan kajian ini agar menemukan tahapan proses sintesis yang sesuai untuk menghasilkan ukuran nanopartikel magnetit di bawah 100 nm. Pendekatan kualitatif dipilih dalam kajian ini untuk mendapatkan informasi selengkapnya. Sumber data yang digunakan adalah dari jurnal berskala nasional maupun jurnal internasional. Temuan yang didapatkan dari kajian ini adalah perlunya perlakuan awal pada bahan dasar pasir besi alami sebelum dilakukan proses sintesis untuk mendapatkan kemurnian pasir besi. Pada tahapan sintesis nanopartikel magnetit diperlukan kontrol pada jumlah komposisi bahan yang dicampurkan, kontrol proses sintesis dan lingkungan sekitarnya. Melalui kontrol tersebut diharapkan dapat ukuran nanopartikel magnetit yang homogen dan distribusi partikelnya lebih banyak serta terhindar dari aglomerasi partikel.

Article Details

Section
Articles

References

A.-H. Lu, E.L. Salabas, & F. Schüth, (2007) . Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46. 1222–1244.
A.Taufiq, Triwikantoro, Pratapa, S., & Darminto. (2008). Sintesis Nanopartikel Fe3-xMnxOx dan karakteristik struktur serta kemagnetannya.Jurnal Nanosains dan Nanoteknologi. Vol. 1 No. 2 Hal 67
A.K. Gupta, & M. Gupta. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 .3995–4021
Akhyar I., Ilyas Yususf & Azwar. (2012). Identifikasi senyawa Logam dalam Pasir Besi di Provinsi Aceh. Majalah Ilmiah Bissotek Vo;. 7 No. 1 Hal. 44-51
Amoozadeh, A., Golian, S., & Rahmani, S. (2015). TiO2-coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. RSC Advances, 5(57), 45974–45982. https://doi.org/10.1039/c5ra06515a
Bahadur, A., Saeed, A., Shoaib, M., Iqbal, S., Bashir, M. I., Waqas, M., Hussain, M. N., & Abbas, N. (2017). Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: Dielectric, magnetic, thermal and optical studies. Materials Chemistry and Physics, 198, 229–235. https://doi.org/10.1016/j.matchemphys.2017.05.061.
Bakar, M.A., Tan, W.L., N.H.H. & Abu Bakar. (2007). J. Magn. Magn. Mater. 314, 1 .
Cheng, Z., Tan, A. L. K., Tao, Y., Shan, D., Ting, K. E., & Yin, X. J. (2012). Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. International Journal of Photoenergy, 2012. https://doi.org/10.1155/2012/608298.
Darminto, M.N., Cholishoh, F.A. Perdana, M.A. Baqiya, Mashuri, Y. Cahyono, Triwikantoro. (2011). Preparing Fe3O4 nanoparticles from Fe2+ ions source by co-precipitation process in various pH, AIP Conf. Proc. 1415.234–237
J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, & M. Li. (2007). Synthesis and characterization of biocompatible Fe3O4 nanoparticles, J. Biomed. Mater. Res. A. 80 : 333–341.
Jalil, Z., Sari, E. N., AB, I., & Handoko, E. (2014). Studi Komposisi Fasa dan Sifat Kemagnetan Pasir Besi Pesisir Pantai Aceh yang Dipreparasi dengan Metode Mechanical Milling. Indonesian Journal of Applied Physics, 04(1), 110–114.
M. Awwad, A., & M. Salem, N. (2013). A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanoscience and Nanotechnology, 2(6), 208–213. https://doi.org/10.5923/j.nn.20120206.09
Mascolo, M. C., Pei, Y., & Ring, T. A. (2013). Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large ph Window with Different Bases. Materials, 6(12), 5549–5567. https://doi.org/10.3390/ma6125549
Mishra, P. M., Naik, G. K., Nayak, A., & Parida, K. M. (2016). Facile synthesis of nano-structured magnetite in presence of natural surfactant for enhanced photocatalytic activity for water decomposition and Cr (VI) reduction. Chemical Engineering Journal, 299(Vi), 227–235. https://doi.org/10.1016/j.cej.2016.04.052.
N Mufti, T Atma, A Fuad & E Sutadji. (2014). Syntesis and Characterization of black, red and yello nanopartikel pigment from the iron sand. AIP Conference Proceeding. Vol 1617 Hal 165 – 169
Nengsih, S. (2018). Potensi Nanopartikel Magnetit Pasir Besi Lampanah Aceh Besar Melalui Studi Kajian Teknik Pengolahan ,. Jurnal Circuit, 2(1), 1–8.
Nengsih, S. (2019). Karakteristik Nanopartikel Magnetite Besi Oksida Lampanah Aceh Besar Melalui Metode Kopresipitasi. Elkawnie, 5(1), 76.
Nkurikiyimfura, I., Wang, Y., Safari, B., & Nshingabigwi, E. (2020). Temperature-dependent magnetic properties of magnetite nanoparticles synthesized via coprecipitation method. Journal of Alloys and Compounds, 846. https://doi.org/10.1016/j.jallcom.2020.156344.
Nurdin, B., Frida, E., Simamora, P., Sinaga, T. (2015). Analisis Difraksi Nanopartikel Fe3O4 Metode Kopresipitasi dengan polietilen Gliukol 6000. Seminar Nasional Fisika UNJ Vol. IV Hal 163-166
Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177(5), 421–427. https://doi.org/10.1016/j.mseb.2012.01.003.
Priya J. H., R. John, A. Alex, K.R. Anoop. (2014). Smart polymers for the controlled delivery of drugs – a concise overview, Acta Pharm. Sin. B. 4. 120–127.
Puspasari, A. D., Fajaroh, F., & Sutrisno. (2012). Sintesis Nanopartikel Magnetit Secara Kopresipitasi Dan Konversinya Menjadi Maghemit Serta Uji Katalitiknya Pada Oksidasi Metilen Biru. Materials Science and Engineering, 4(2012), 1–9.
Rahmawati, R., Permana, M.G., Harison, B., Nugraha, , Suyatman, B.Y., & Kurniadi, D. (2017). Optimalization of frequency and stirring rate for synthesis of magnetite (Fe3O4) Nanoparticles by using coprecipitation-ultrasonic irradiation methods. Procedia Engineering Vol 170 Hal 55-5
S. Liong. (2005). A multifunctional approach to development, fabrication, and characterization of Fe3O4 composites, Georgia Institut of Technology.
S. Shylesh, V. Schünemann, & W.R. Thiel. (2010). Magnetically separable nano- catalysts: Bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 3428–3459
Saragi, T., Depi, B. L., Butarbutar, S., Permana, B., & Risdiana. (2018). The impact of synthesis temperature on magnetite nanoparticles size synthesized by co-precipitation method. Journal of Physics: Conference Series, 1013(1). https://doi.org/10.1088/1742-6596/1013/1/012190
Septiyan, I. (2010). Pengaruh milling terhadap peningkatan kualitas pasir besi sebagai bahan baku industri logam. Universitas Islam Negeri, 10–13.
Sharifi, I., Shokrollahi, H., & Amiri, S. (2012). Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mater. 324 (2012) 903–915.
Shen, L., Qiao, Y., Guo, Y., Meng, S., Yang, G., Wu, M., & Zhao, J. (2014). Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceramics International, 40(1 PART B), 1519–1524. https://doi.org/10.1016/j.ceramint.2013.07.037.
Simamora, P., & Krisna. (2017). Sintesis dan karakteristik sifat magnetik nanokomposit Fe3O4-Montmorilonit berdasarkan variasi suhu. Prosiding Seminar Nasional Fisika UNJ Vol. IV Hal 75-80.
Sunaryono, Taufiq, A., Mashuri, Pratapa, S., Zainuri, M., Triwikantoro, & Darminto. (2015). Various magnetic properties of magnetite nanoparticles synthesized from iron-sands by coprecipitation method at room temperature. Materials Science Forum, 827(June), 229–234. https://doi.org/10.4028/www.scientific.net/MSF.827.229
Susilowati, E. N., Fajaroh, F., & Wonorahardjo, S. (2017). Sintesis Nanopartikel Magnetit (Fe3o4) Secara Elektrokimia dan Aplikasinya Sebagai Penyerap Pb(II). Jurnal Kimia, Ii, 1–10.
X.M. Li, G. Xu, Y. Liu, T. He, Magnetic Fe3O4 nanoparticles: Synthesis and application in water treatment, Nanosci. Nanotechnol.-Asia 1 (2011) 14–24.